263 research outputs found

    Imaging of acute traumatic injuries of the thoracic aorta

    Get PDF
    Abstract.: Blunt traumatic aortic injuries are a major concern in the settings of high-speed deceleration accidents, since they are associated with a very high mortality rate; however, with prompt diagnosis and surgery, 70% of the patients with a blunt aortic lesion who reach the hospital alive will survive. This statement challenges the emergency radiologist in charge to evaluate the admission radiological survey in a severe chest trauma patient. With a 95% negative predictive value for the identification of blunt traumatic aortic lesions, plain chest film represents an adequate screening test. If aortography remains the gold standard, it tends, at least in hemodynamically stable trauma patients, to be replaced by spiral-CT angiography (SCTA), which demonstrates a 96.2% sensitivity, a 99.8% specificity, and a 99.7% accuracy. In unstable patients, trans-esophageal echography (TEE) plays a major diagnostic role. Knowledge of advantages and pitfalls of these imaging techniques, as reviewed in this article, will help the emergency radiologist to choose the appropriate algorithm in the diagnosis of traumatic aortic injury, for each trauma patien

    Cerebral perfusion measurement in brain death with intravoxel incoherent motion imaging

    Get PDF
    The assessment of brain death can be challenging in critically ill patients, and cerebral perfusion quantification might give information on the brain tissue viability. Intravoxel incoherent motion perfusion imaging is a magnetic resonance imaging technique, which extracts perfusion information from a diffusion-weighted sequence, and provides local, microvascular perfusion assessment without contrast media injection. Diffusion weighted images were acquired with 16 b-values (0–900 s/mm2) in the brain in two patients with cerebral death, confirmed by clinical assessment and evolution, as well as in two age-matched healthy subjects. The intravoxel incoherent motion perfusion fraction maps were obtained by fitting the bi-exponential signal equation model. 8 regions of interest were drawn blindly in the brain neocortex (in the frontal, temporal, parietal, and occipital lobes on both sides) and perfusion fractions were compared between patients with cerebral death and healthy control. Statistical significance was assessed using two-sided Wilcoxon signed rank test, and set to α < 0.05. Intravoxel incoherent motion (IVIM) perfusion fraction was vanishing in the brain of the two patients with cerebral brain death compared to the healthy controls. Mean (± standard deviation) cortex perfusion fraction was 0.016 ± 0.005 respectively 0.005 ± 0.008 in the cerebral death patients, compared to respectively 0.052 ± 0.021 (p = 0.02) and 0.071 ± 0.042 (p = 0.008) in the age-matched controls. Intravoxel incoherent motion perfusion imaging is a promising tool to assess local brain tissue viability in critically ill patients

    Potentially Low Cost Solution to Extend Use of Early Generation Computed Tomography

    Get PDF
    In preparing a case report on Brown-Séquard syndrome for publication, we made the incidental finding that the inexpensive, commercially available three-dimensional (3D) rendering software we were using could produce high quality 3D spinal cord reconstructions from any series of two-dimensional (2D) computed tomography (CT) images. This finding raises the possibility that spinal cord imaging capabilities can be expanded where bundled 2D multi-planar reformats and 3D reconstruction software for CT are not available and in situations where magnetic resonance imaging (MRI) is either not available or appropriate (e.g. metallic implants). Given the worldwide burden of trauma and considering the limited availability of MRI and advanced generation CT scanners, we propose an alternative, potentially useful approach to imaging spinal cord that might be useful in areas where technical capabilities and support are limited

    CT imaging features of carotid artery plaque vulnerability

    Get PDF
    Despite steady advances in medical care, cardiovascular disease remains one of the main causes of death and long-term morbidity worldwide. Up to 30% of strokes are associated with the presence of carotid atherosclerotic plaques. While the degree of stenosis has long been recognized as the main guiding factor in risk stratification and therapeutical decisions, recent evidence suggests that features of unstable, or 'vulnerable', plaques offer better prognostication capabilities. This paradigmatic shift has motivated researchers to explore the potentialities of non-invasive diagnostic tools to image not only the lumen, but also the vascular wall and the structural characteristics of the plaque. The present review will offer a panoramic on the imaging modalities currently available to characterize carotid atherosclerotic plaques and, in particular, it will focus on the increasingly important role covered by multidetector computed tomographic angiography

    Perfusion-CT guided intravenous thrombolysis in patients with unknown-onset stroke: a randomized, double-blind, placebo-controlled, pilot feasibility trial

    Get PDF
    Introduction: Patients with unknown stroke onset are generally excluded from acute recanalisation treatments. We designed a pilot study to assess feasibility of a trial of perfusion computed tomography (PCT)-guided thrombolysis in patients with ischemic tissue at risk of infarction and unknown stroke onset. Methods: Patients with a supratentorial stroke of unknown onset in the middle cerebral artery territory and significant volume of at-risk tissue on PCT were randomized to intravenous thrombolysis with alteplase (0.9mg/kg) or placebo. Feasibility endpoints were randomization and blinded treatment of patients within 2h after hospital arrival, and the correct application (estimation) of the perfusion imaging criteria. Results: At baseline, there was a trend towards older age [69.5 (57-78) vs. 49 (44-78) years] in the thrombolysis group (n = 6) compared to placebo (n = 6). Regarding feasibility, hospital arrival to treatment delay was above the allowed 2h in three patients (25%). There were two protocol violations (17%) regarding PCT, both underestimating the predicted infarct in patients randomized in the placebo group. No symptomatic hemorrhage or death occurred during the first 7days. Three of the four (75%) and one of the five (20%) patients were recanalized in the thrombolysis and placebo group respectively. The volume of non-infarcted at-risk tissue was 84 (44-206) cm3 in the treatment arm and 29 (8-105) cm3 in the placebo arm. Conclusions: This pilot study shows that a randomized PCT-guided thrombolysis trial in patients with stroke of unknown onset may be feasible if issues such as treatment delays and reliable identification of tissue at risk of infarction tissue are resolved. Safety and efficiency of such an approach need to be establishe

    Carotid Atheroma Rupture Observed In Vivo and FSI-Predicted Stress Distribution Based on Pre-rupture Imaging

    Get PDF
    Atherosclerosis at the carotid bifurcation is a major risk factor for stroke. As mechanical forces may impact lesion stability, finite element studies have been conducted on models of diseased vessels to elucidate the effects of lesion characteristics on the stresses within plaque materials. It is hoped that patient-specific biomechanical analyses may serve clinically to assess the rupture potential for any particular lesion, allowing better stratification of patients into the most appropriate treatments. Due to a sparsity of in vivo plaque rupture data, the relationship between various mechanical descriptors such as stresses or strains and rupture vulnerability is incompletely known, and the patient-specific utility of biomechanical analyses is unclear. In this article, we present a comparison between carotid atheroma rupture observed in vivo and the plaque stress distribution from fluid–structure interaction analysis based on pre-rupture medical imaging. The effects of image resolution are explored and the calculated stress fields are shown to vary by as much as 50% with sub-pixel geometric uncertainty. Within these bounds, we find a region of pronounced elevation in stress within the fibrous plaque layer of the lesion with a location and extent corresponding to that of the observed site of plaque rupture

    Automated versus manual post-processing of perfusion-CT data in patients with acute cerebral ischemia: influence on interobserver variability

    Get PDF
    The purpose of this study is to compare the variability of PCT results obtained by automatic selection of the arterial input function (AIF), venous output function (VOF) and symmetry axis versus manual selection. Imaging data from 30 PCT studies obtained as part of standard clinical stroke care at our institution in patients with suspected acute hemispheric ischemic stroke were retrospectively reviewed. Two observers performed the post-processing of 30 CTP datasets. Each observer processed the data twice, the first time employing manual selection of AIF, VOF and symmetry axis, and a second time using automated selection of these same parameters, with the user being allowed to adjust them whenever deemed appropriate. The volumes of infarct core and of total perfusion defect were recorded. The cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) and blood-brain barrier permeability (BBBP) values in standardized regions of interest were recorded. Interobserver variability was quantified using the Bland and Altman's approach. Automated post-processing yielded lower coefficients of variation for the volume of the infarct core and the volume of the total perfusion defect (15.7% and 5.8%, respectively) compared to manual post-processing (31.0% and 12.2%, respectively). Automated post-processing yielded lower coefficients of variation for PCT values (11.3% for CBV, 9.7% for CBF, and 9.5% for MTT) compared to manual post-processing (23.7% for CBV, 32.8% for CBF, and 16.7% for MTT). Automated post-processing of PCT data improves interobserver agreement in measurements of CBV, CBF and MTT, as well as volume of infarct core and penumbra

    Magnetic resonance imaging for diagnostic workup of Embolic Stroke of Undetermined Source: a systematic review

    Get PDF
    Background: Embolic stroke of undetermined source (ESUS) refers to ischemic stroke where the underlying cause of thromboembolism cannot be found despite the recommended diagnostic workup. Unidentified source of emboli hinders clinical decision-making and patient management with detrimental consequences on long-term prognosis. The rapid development and versatility of magnetic resonance imaging (MRI) make it an appealing addition to the diagnostic routine of patients with ESUS for the assessment of potential vascular and cardiac embolic sources. Aims: To review the use of MRI in the identification of cardiac and vascular embolic sources in ESUS and to assess the reclassification value of MRI examinations added to the conventional workup of ESUS. Summary of review: We reviewed the use of cardiac and vascular MRI for the identification of a variety of embolic sources associated with ESUS, including atrial cardiomyopathy, left ventricular pathologies, and supracervical atherosclerosis in carotid and intracranial arteries and in distal thoracic aorta. The additional reclassification after MRI examinations added to the workup of patients with ESUS ranged from 6.1% to 82.3% and varied depending on the combination of imaging modalities. Conclusion: MRI techniques allow us to identify additional cardiac and vascular embolic sources and may further decrease the prevalence of patients with the diagnosis of ESUS
    corecore